Fenbendazole pharmacokinetics, metabolism, and potentiation in horses.
نویسندگان
چکیده
The present study was designed to describe the pharmacokinetics and fecal excretion of fenbendazole (FBZ) and fenbendazole sulphoxide (FBZSO) and their metabolites in horses, to investigate the effects which concurrent feeding has on the absorption and pharmacokinetics of FBZ, and to determine the effect of coadministration of the metabolic inhibitor piperonyl-butoxide on the in vivo pharmacokinetics and in vitro liver microsomal metabolism of sulfide and sulfoxide benzimidazoles. The effect of piperonyl-butoxide on the enantiomeric genesis of the sulfoxide moiety was also investigated. Following administration of FBZSO and FBZ, the fenbendazole sulphone metabolite predominated in plasma, and the C(max) and area under the plasma curve (AUC) values for each moiety were larger (P < 0.001) following FBZSO than FBZ. In feces the administered parent molecule predominated. The combined AUC for active benzimidazole moieties following oral administration of FBZ (10 mg/kg) in horses was almost 4 times as high in unfed horses (2.19 microg x h/ml) than in fed horses (0.59 microg x h/ml), and coadministration of piperonyl-butoxide significantly increased the AUC and C(max) of active moieties following intravenous administration of FBZSO and oral administration of FBZ. When FBZSO was administered i.v. as a racemate, the first enantiomer of oxfendazole (FBZSO-1) predominated in plasma, however, following coadministration with piperonyl-butoxide, the second enantiomer of oxfendazole (FBZSO-2) predominated for 10 h. Piperonyl-butoxide significantly reduced the oxidative metabolism of FBZSO and FBZ in equine liver microsomes and altered the ratio of enantiomers FBZSO-1/FBZSO-2 from >4:1 to 1:1. It is concluded that in horses efficacy of FBZSO and FBZ could be improved by administration to unfed animals and coadministration with piperonyl-butoxide.
منابع مشابه
Anthelmintic Resistance of Strongyle Nematodes to Ivermectin and Fenbendazole on Cart Horses in Gondar, Northwest Ethiopia
A study was conducted from November 2015 to April 2016 to determine fenbendazole and ivermectin resistance status of intestinal nematodes of cart horses in Gondar, Northwest Ethiopia. Forty-five strongyle infected animals were used for this study. The animals were randomly allocated into three groups (15 horses per group). Group I was treated with fenbendazole and Group II with ivermectin and G...
متن کاملA study to evaluate the field efficacy of ivermectin, fenbendazole and pyrantel pamoate, with preliminary observations on the efficacy of doramectin, as anthelmintics in horses.
The efficacy of ivermectin, fenbendazole, pyrantel pamoate and doramectin was evaluated under field conditions at 2 sites in the Free State Province of South Africa. The study involved 25 horses at each site, divided into 5 groups of equal size. Ivermectin, fenbendazole and pyrantel pamoate were administered orally at doses of 0.2, 10 and 19 mg/kg respectively. Doramectin was administered by in...
متن کاملA New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs
Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...
متن کاملA New Model to Describe the Single-dose Pharmacokinetics of Bevacizumab and Predict Its Multiple-Dose Pharmacokinetics in Beagle Dogs
Complex pharmacokinetic (PK) properties including nonlinear elimination were encountered by some monoclonal antibodies (mAbs), and classic compartment models sometimes failed to appropriately describe those properties. In this work, a new model was built on a comprehensive analysis of the complex elimination of mAbs. This new model was firstly utilized to fit with the single-dose plasma concent...
متن کاملCYP2J2 and CYP2C19 are the major enzymes responsible for metabolism of albendazole and fenbendazole in human liver microsomes and recombinant P450 assay systems.
Albendazole and fenbendazole are broad-spectrum anthelmintics that undergo extensive metabolism to form hydroxyl and sulfoxide metabolites. Although CYP3A and flavin-containing monooxygenase have been implicated in sulfoxide metabolite formation, the enzymes responsible for hydroxyl metabolite formation have not been identified. In this study, we used human liver microsomes and recombinant cyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 11 شماره
صفحات -
تاریخ انتشار 2002